3 少年教授
�汤姆逊1底推翻。这位英国物理学家,著名的剑桥大学卡文迪什实验室主任,发现了比最小的原子还要小一千倍的粒子,从而震惊了整个科学界。汤姆逊称这种粒子为“微粒”。不久之后,这种微粒被发现是电的基本单位,从而被命名为“电子”。

  1汤姆逊(sir josephomson,1856—1940),英国物理学家,发现电于及同位素,因气体导体研究获1906年诺贝尔物理学奖。

  这是人们第一次窥视到亚原子的世界。这一发现把人们对科学的观念一下子颠倒了过来。汤姆逊对电子的发现造成了科学认识的危机,迫使物理学和化学理论作出重大的修改——在世纪之交,这一事件的影响也许比任何别的事件的影响都要大得多。

  电子看上去是原子的自然组成部分。既然原子是由更小的粒子组成的,那么原子到底是什么呢?汤姆逊发现,电子带负电。但是在正常情况下,原子并不带任何电荷;因此一定存在一些带正电的物质来中和电子的负电。汤姆逊认为电子也许稳定在一个正电场中,就像布了蛋糕里的葡萄干。不久之后,他从前的一位学生,新西兰人卢瑟福1翻了他的理论。卢瑟福是动手做实验的天才,他在1911年宣布,他发现原子具有完全不同的结构:他设计了一种jīng密的实验,显示出在原子中央是一个很小、密度很大且带正电的原子核。原子的其余部分除了电子以外空空荡荡。如果把原子放大到足球场大小,卢瑟福的原子核就会像放在五十码线上的一颗米粒,而小得几乎看不见的电子则围绕外层看台在转圈。

  1卢瑟福(emest rutherford,1871—1937),英国物理学家,生于新西兰,因对元素衰变的研究获1908年诺贝尔化学奖,通过阿尔法粒子散射试验发现原子核,并据此提出核型原子模型。

  这一发现与汤姆逊发现电子同样地令人吃惊。原子不是实心的球,而是一张jīng巧的丝网。实心的物质实际上几乎是一片空白。卢瑟福的发现引发了另一lún理论探讨。如果原子核真的那么小且带正电,而电子真的高原子核那么远且带负电,那么是什么力量使两者结合在一起呢?异性相吸,为什么电子不会一头栽进原子核中去呢?

  物理学家对运动的物体和力的研究是相当深入的;牛顿理论以及后来科学家的研究使他们能够仅仅凭几个地球上的试验就能预测天体的运动。同样,这一套久经考验的自然规律——后来被称之为古典物理学——也可以用来解释原子的运动。卢瑟福自己就提出,原子结构有可能像一个小型的太阳系,电子绕原子核运动就如同行星绕太阳运动。电子运行的速度可能抵消了原子核的吸引力。同大多数物理学家一样,他认为电子是高速运动的;卢瑟福的原子模型是一个动态模型。但他的理论不能成立。一个致命的缺陷是,在传统理论下,任何运动的物体都会失去能量。就拿电子来说,这意味着卢瑟福的原子会像一块上了发条的表,发条松了之后,电子就会盘旋着掉进原子中去。

  如果原子不像太阳系,那像什么呢?在20世纪初的几十年内,这个问题的答案像圣杯1一样吸引了几代孜孜以求的物理学家。

  1圣杯,传说是耶稣在最后的晚餐所用的餐具之一。

  在寻找圣杯的旅途中物理学家并不是独行者。在引起鲍林关注的那篇论文中朗缪尔写道:“原子结构这一问题主要是由物理学家来研究的,而他们很少考虑那些最终必须由原子结构理论来解释的化学特性。有关物质的化学性质和关系,我们已经积累了大量的知识,归纳出了元素周期表。相对于用纯粹物理方法进行试验得到的数据而言,丰富得多的化学资料是建立原子模型的更好基础。”

  这儿涉及到一些化学与物理学科之间的竞争。前者是19世纪科学之王,而后者将是20世纪科技的霸主。路易斯和朗缪尔都熟悉并欣赏物理学——两人都在德国与物理化学的先驱们共同学习过,路易斯还是美国最早接�