4 加州理工学院-2
动态原子模型,完全不同于鲍林在俄勒冈农学院为之入迷的路易斯和朗缪尔那种静态的、立方体原子模型。到鲍林进入加州理工学院的时候,化学家的静态原子已成为物理学家的笑谈,就像加州理工学院院长密立根在1924年的一次讲话中讥讽的那样,“游手好闲的电子坐在干货盒子的角上,准备握手,或是抓住其他原子中同样游手好闲的电子。”物理学家知道,电子得不停地运动才不致于撞向原子核。

  与此同时,物理学家的动态原子也渐渐为化学家所接受。索末菲延伸的椭圆形轨道赋予玻尔原子一些化学家必需的三维特性:如果椭圆的一头距离原子核较近的话,电子的轨道就会像胳膊一样从原子核伸展出去,以一种可以想见的方式以特定的方向围绕其他原子。玻尔在20年代早期也重塑了他的原子模型,把扁平的轨道变为三维的壳状轨道,更接近于路易斯的立方体模型。妥协同样来自于化学家方面。路易斯设想他的静态电子可能代表运动离子的平均位置。到1923年,距他自己提出立方体原子模型仅过了七年,路易斯已准备接受玻尔—索末菲模型——至少在对氢原子的解释上——尽管还不能解释原子是如何互相结合在一起的。

  玻尔—索末菲原子模型在20世纪20年代达到了最jīng妙的阶段,完全是想象力造就的引人入胜的工艺品。在按照玻尔的规定画出来的图案中,原子看起来像一朵美丽的几何花,花瓣是互相交叉的jīng细的电子轨道。鲍林在加州理工学院读研究生的几年中,这些复杂的原子结构,周边的跃动、旋转、和谐的电子轨道,加上和弦般的光谱线,照索末菲的说法,似乎代表了“球体上真正的音乐”。

  但是这种音乐完全弹错了地方。电子怎能从一个轨道消失,在另一个轨道重现,而不在中间什么地方存在呢?经典物理学所说的“量子跃迁”是绝对不可能的。无人知道答案。按照牛顿对带电物体运动的理论,带负电的电子在围绕带正电的原子核运动时怎能不损失能量呢?大物理学家密立根也只能说,“上帝没有那样来创造电子。”即便索东菲作了修正,这一模型仍然不能解释某些光谱现象,特别在较为复杂的原子中。这一理论存在缺陷。在原子层次上,经典物理学看来无能为力,但是玻尔的量子理论同样解决不了问题。正如物理学家乔治·枷莫夫所写的,“一时间似乎物理学家和物理学都神经错乱了。”

  有关对玻尔—索末菲模型所作的批评,鲍林有些是在托尔曼的课上听到的,有些是从来访的欧洲物理学家的讲座上听到的,特别是从保罗·艾伦费斯特关于量子物理的课程处听到更多。然而,作为研究生,鲍林尚没有能力评判玻尔的模型,也没有能力创建一个新模型。每一方面都有那么多的数据,每天都发生那么多的变化,需要消化那么多新思想。在大多数时候,他只是接受课堂上的内容,包括玻尔—索末菲原子模型的一般正确性。在加州理工学院物理化学讨论会上,鲍林认为这是托尔曼讲授的最重要的课程,老师和学生一章接一章地阅读索末菲影响深远的德文教材《原子结构和光谱线》最新的第四版。在书中,这位德国物理学家详细阐述了他的原子结构的思想。索末菲本人在1922年—1923年美国访学时提出了自己的原子模型。鲍林在加州理工学院听了他的讲座,并成为一名信徒:一天下课后,鲍林截住索末菲,一边沿着加州理工学院的拱廊走去,一边向他讲述自己对原子结构的想法;他甚至用铅丝和木块做了一个模型,向索末菲展示(后来被证明是错误的)如何用玻尔—索末菲轨道来解释碳的四面体结构。在那时,鲍林还不能够辨别哪些是量子理论的缺陷,哪些是自身学识的短缺。

  自身学识的短缺有时候是显而易见的,这使鲍林很痛苦。在一次讨论会上,托尔曼问鲍林,为什么大多数物质置于磁场中会短暂地表现出与磁场相反的磁性——一种称为抗磁性的现象。正确答案是,磁场改变了物质中电子在轨道上的运动。但是鲍林并不知晓最新的发现,回答说抗磁性不过是“物质的一般特性”。这一回答逗乐了托尔曼,他又向鲍林提了更多的问题。另一